新闻搜索
文章正文
3D打印技术 -- 快速成型的魅力
作者:管理员    发布于:2016-06-09 00:01:34    文字:【】【】【
摘要:FDM(Fused Deposition Modeling)中文全称为熔融沉积成型,是目前应用最为广泛的3D打印技术。FDM应用领域包括概念建模、功能性原型制作、制造加工、最终用途零件制造、修整等方面,涉及汽车、医疗、建筑、娱乐、电子等领域,随着技术的进步,FDM的应用还在不断拓展。
    说到3D打印,可能我们已经不陌生。FDM一直是各大厂商应用最广泛的技术,这种技术价格有优势,普通消费者也能承受,所以渐渐成为最受欢迎的一种技术之一。(FusedDepositionModeling)中文全称为熔融沉积成型,是目前应用最为广泛的3D打印技术。2009年FDM关键技术专利到期,各种基于FDM技术的3D打印公司开始大量出现,行业迎来快速发展期。下面跟着极光尔沃小编详细了解。
  FDM应用领域包括概念建模、功能性原型制作、制造加工、最终用途零件制造、修整等方面,涉及汽车、医疗、建筑、娱乐、电子等领域,随着技术的进步,FDM的应用还在不断拓展。
 
  FDM技术优点包括成本低、成型材料范围较广、环境污染较小、设备及材料体积较小、原料利用率高、后处理相对简单等;缺点包括成型时间较长、精度低、需要支撑材料等。与其他3D打印技术相比,FDM技术不涉及激光、高温、高压等危险环节,同时其体积也较小,是成本相对较低的3D打印技术,能够大量应用于家庭及办公室环境,随着关键技术专利的到期,FDM的各种应用领域还在不断拓展,前景值得期待。
 
  一、FDM技术的概况
 
  1、3D打印技术路径概况
  3D打印(3DPrinting)技术,是在计算机控制下,基于“增材制造”原理,立体逐层堆积离散材料,进行零件原型或最终产品的成型与制造的技术。该技术以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,将3D实体变为若干个2D平面,利用激光束、电子束、热熔喷嘴等方式将粉末、热塑性材料等特殊材料进行逐层堆积粘结,最终叠加成型,制造出实体产品。
  3D打印工艺原理
  经过几十年的发展,目前已经开发出多种3D打印技术路径,从大类上划分为挤出成型、粒状物料成型、光聚合成型和其他成型几大类,基础成型主要代表技术路径为熔融沉积成型(FDM);粒状物成型技术路径主要包括电子束熔化成型(EBM)、选择性激光烧结(SLS)、三维打印(3DP)、选择性热烧结(SHS)等;光聚合成型主要包括光固化(SLA)、数字光处理(DLP)、聚合物喷射(PI);其他技术包括激光熔覆快速制造技术(LENS)、熔丝制造(FFF)、融化压模(MEM)、层压板制造(LOM)等。
  熔融沉积成型FDM工艺一般是热塑性材料,以丝状形态供料
  其中FDM、SLA、LOM、SLS、3DP为主流技术,熔融沉积成型FDM工艺一般是热塑性材料,以丝状形态供料。材料在喷头内被加热熔化,喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速凝固,并与周围的材料凝结;光固化快速成形SLA,又称立体光刻、光成形等,是一种采用激光束逐点扫描液态光敏树脂使之固化的快速成型工艺;叠层实体制造LOM工艺是快速原型技术中具有代表性的技术之一,是基于激光切割薄片材料、由黏结剂黏结各层成形;选择性激光烧结SLS工艺,是采用红外激光作为热源来烧结粉末材料,并以逐层堆积方式成形三维零件的一种快速成形技术;3DP工艺与SLS工艺类似,采用粉末材料成形,如陶瓷粉末,金属粉末。所不同的是材料粉末不是通过烧结连接起来的,而是通过喷头用粘接剂将零件的截面“印刷”在材料粉末上面。
 
  2、FDM发展历程
  熔融沉积成型(FDM,FusedDepositionModeling)是上世纪八十年代末,由美国Stratasys公司发明的技术,是即光固化快速成型(SLA)和叠层实体快速成型工艺(LOM)后的另一种应用比较广泛的3D打印技术路径。由于FDM工艺不需要激光系统支持,成型材料多为ABS、PLA等热塑性材料,因此性价比较高,是桌面级3D打印机广泛采用的技术路径。
 
  3、FDM工艺原理
  FDM的工作原理是将丝状原料通过送丝部件送入热熔喷头,然后在喷头内被加热融化,在电脑控制下喷头沿着零件截面轮廓和填充轨迹运动,将半流动状态的材料送到指定位置并最终凝固,同时与周围材料粘结,选择性地逐层融化与覆盖,最终形成成品。
  FDM成型过程简图
  一套完成的FDM制造系统包括硬件系统、软件系统,硬件系统主要指3D打印机本身,一台利用FDM技术的3D打印机包括工作平台、送丝装置、加热喷头、储丝设备和控制设备五大部分组成。
 
  二、FDM技术的应用
 
  资料显示,FDM应用领域包括概念建模、功能性原型制作、制造加工、最终用途零件制造、修整等方面,涉及汽车、医疗、建筑、娱乐、电子、教育等领域。
  1、概念建模
  概念建模的应用主要涉及建筑模型、人体工程学研究、市场营销和设计方面。
3D打印机
  3D打印建筑模型
  建筑建模。计算机模拟在工程设计和建筑领域已经应用了很长一段时间。但是,建筑可视化的传统做法是使用木材或泡沫板制作建筑的等比例模型。这使得建筑师可以看到建筑在实际空间中如何矗立,以及是否存在任何可以改正的问题。而3D打印结合了计算机模拟的精确性和等比例模型的真实性,能够有效降低设计成本和开发时间,同时通过等比例的模型可以对建筑进行改良,增加安全性和合理性。
  3D打印符合人体工程学的键盘
  人体工程学设计。正确的人体工程学设计对预防受伤以及加强工作效率必不可少。3D打印的模型允许在开发流程期间就对人体工程学性能进行精确地测试。通过3D打印技术,设计人员可以创作出逼真的模型,再现产品每个单独部件的物理特性。在多次测试周期期间可以对材料进行修改,从而实现在将产品全面投入生产前对其人体工程学方面进行优化。
  3D打印奥斯卡小金人
  市场营销和设计。利用FDM技术构建的模型可以进行打磨、上漆、甚至镀铬,从而达到与新产品最终外观一致的目的。FDM使用生产级的热塑塑料,因此模型可以获得与最终产品一样的耐用性和使用感受。
  2、功能性原型制作
  在产品设计初期,可以利用FDM技术快速获得产品原型,而通过FDM技术获得的原型本身具有耐高温、耐化学腐蚀等性能,能够通过原型进行各种性能测试,以改进最终的产品设计参数,大大缩短了产品从设计到生产的时间。
  3、制造加工
  由于FDM技术可以采用高性能的生产级别材料,可以在很短的时间内制造标准工具,并可进行小批量生产,通过小批量生产可以使用与最终产品相同的流程和材料来创建原型,并在等待最终模具从车间发往各地的同时,即可将新产品上市。
  4、最终用途零件
  FDM技术可制造业界最为耐用、稳定、可重复使用的部件。其精度可媲美注塑成形,且能使用多种热塑性材料,通过FDM技术,制造商可以抓住更多小批量制造、定制最终用途零件和工厂自动化的机会。
  5、FDM应用案例
3D打印机
  丰田公司利用FDM技术制作母模
  丰田公司采用FDM工艺制作右侧镜支架和四个门把手的母模,通过快速模具技术制作产品而取代传统的CNC制模方式,使得2000Avalon车型的制造成本显著降低,右侧镜支架模具成本降低20万美元,四个门把手模具成本降低30万美元。FDM工艺已经为丰田公司在轿车制造方面节省了200万美元。
  美国Mizunos公司利用FDM技术制造新产品母模
  Mizuno是世界上最大的综合性体育用品制造公司,公司计划开发一套新的高尔夫球杆,通常需要13个月的时间。FDM的应用大大缩短了这个过程,设计出的新高尔夫球头用FDM制作后,可以迅速地得到反馈意见并进行修改,大大加快了造型阶段的设计验证,一旦设计定型,FDM最后制造出的ABS原型就可以作为加工基准在CNC机床上进行钢制母模的加工。新的高尔夫球杆整个开发周期在7个月内就全部完成,缩短了40%的时间。目前,FDM快速原型技术已成为Mizuno美国公司在产品开发过程中起决定性作用的组成部分。
 
 
  三、FDM技术优缺点
 
  与其他3D打印技术路径相比,FDM具有成本低、原料广泛等优点,同样存在成型精度低、支撑材料难以剥离等特点,下面做简要分析。FDM技术的优缺点
 
  1、具有的优点
  成本低。FDM技术不采用激光器,设备运营维护成本较低,而其成型材料也多为ABS、PC等产用工程塑料,成本同样较低,因此目前桌面级3D打印机多采用FDM技术路径。
  成型材料范围较广。通过上述分析我们知道,ABS、PLA、PC、PP等热塑性材料均可作为FDM路径的成型材料,这些都是常见的工程塑料,易于取得,且成本较低。
  环境污染较小。在整个过程中只涉及热塑材料的熔融和凝固,且在较为封闭的3D打印室内进行,且不涉及高温、高压,没有有毒有害物质排放,因此,环境友好程度较高。
  设备、材料体积较小。采用FDM路径的3D打印机设备体积较小,而耗材也是成卷的丝材,便于搬运,适合于办公室、家庭等环境。
  原料利用率高。没有使用或者使用过程中废弃的成型材料和支撑材料可以进行回收,加工再利用,能够有效提高原料的利用效率。
  后处理相对简单。目前采用的支撑材料多为水溶性材料,剥离较为简单,而其他技术路径后处理往往还需要进行固化处理,需要其他辅助设备,FDM则不需要。
 
  2、存在的缺点
  成型时间较长。由于喷头运动是机械运动,成型过程中速度受到一定的限制,因此一般成型时间较长,不适于制造大型部件。
  需要支撑材料。在成型过程中需要加入支撑材料,在打印完成后要进行剥离,对于一些复杂构件来说,剥离存在一定的困难。另外,随着技术的进步,一些采用3D打印厂家已经推出了不需要支撑材料的机型,该缺点正在被逐步克服。
  3、与其他3D打印技术的对比
  FDM技术更适合于对精度要求不高的桌面级3D打印机
  与SLA、LOM、SLS等成熟3D打印技术相比,FDM具有自己的特点,总体来说,FDM技术适合于对精度要求不高的桌面级3D打印机,易于推广,市场空间也较大。

  总结与展望
 
  由于在加工过程中不涉及激光技术,整体设备体积较小,耗材获取较为容易,打印成本也相对较低,因此FDM技术路径是面向个人的3D打印机的首选技术,通过采用FDM技术的3D打印机,设计人员可以在很短的时间内设计并制作出产品原型,并通过实体对产品原型进行改进,与传统的计算机建模相比,能够真实的将实物展现在设计人员的面前。同时FDM技术也可以在各种文娱创意领域中广泛应用,能够满足人们对一些产品的个性化定制服务,随着人民生活水平的提高,这种需求将不断增加。同时由于FDM技术专利已经到期,其大面积推广已经不存在障碍,因此我们预计采用FDM技术路径的3D打印机,特别是桌面级3D打印机的市场空间将急剧增加。
 
 
(来源:网络)
免责声明: 本文仅代表作者个人观点,与本站无关,其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
脚注信息

深圳马騳骉三维科技有限公司